Нещо интересно от доц. Ивайло Кортезов:
AIMO - Австралийска Математическа Олимпиада - Australian Intermediate Mathematics OlympiadМодерната това лято думичка AIMO идва в истинския си, оригинален вариант в България!
Медалите без съмнение няма да са на килограм, но пък всеки запален математик ще може да провери какво му е нивото спрямо сериозна австралийска конкуренция.
Състезанието ще се проведе на 11 септември в:
- Пловдив - организатор Академия 21 Век, цена за участие - 50лв;
- София - организатор ДАНИС, цена за участие - 38лв.В Австралия, това е едно от най-важните състезания за тази възрастова група, аналог на нашата Олимпиада. По резултати от него се определят отборите за интересни международни състезания.
Записани участници - в Пловдив се очакват около 10 състезателя, в София - по-малко...
10 задачи. 8 с отговор положително число от 0 до 1000, две за описване. Време за решаване - 4 часа.
Задачите са на английски, описанията на 9 и 10 задача е необходимо също да са на английски.
Предполагаеми отговори - възстановени по памет, може да има неточности в спомените, а може и въобще да не са решени правилно:
1 - 15
2 - 168
3 - 128
4 - 42
5 - 441
6 - 28
7 - 937
8 - 376
Условия на задачи от AIMO 2014:9. Около трапец ABCD е описана окръжност с център
O. Диагоналите на трапеца се пресичат в точка
M под ъгъл
60 градуса.
Разстоянието
MO = 10 см.
Намерете
AB - CD = ? см
10. Таблица n x n е покрита с 2х2 квадрати като показания на снимката.
Всяко квадратче от n x n таблицата трябва да се припокрие с поне едно квадратче от оранжево - черната 2х2 таблица.
Оранжево - черните 2х2 квадрати могат да се въртят на 90 градуса и да се припокриват.
а/ Намерете таблица n x n, така че в нея да има n черни квадратчета.
б/ Докажете, че в таблица n x n не може да има по-малко от n на брой черни квадратчета.
в/ Намерете максималния брой черни квадратчета в таблица n x n.
Допълнение за бонус - взима се предвид само при равни точки от 10-те задачи:
а/ Покажете, че с посочената оранжево - черна 2х2 таблица могат да се постигнат всички възможни подредби на 3 черни и 6 оранжеви квадратчета в таблица 3х3.
б/ ?
в/ ?
Резултати и статистика от AIMO 2014Общо, на AIMO са се явили 1306 ученика от 7, 8, 9 и 10-ти клас от 198 училища от цял свят.
Участници по класове:7 клас - 167
8 клас - 336
9 клас - 390
10 клас - 413
Забележка - мисля, че данните за разпределението по класове не са съвсем вярни, има обърквания в класовете на българските състезатели, може би има и при другите.
Как са разпределени постиженията:Prize - 22;
High Distinction - 96;
Distinction - 179;
Credit - 366;
Participation - 643.
Как са разпределени постиженията по класове:School year 7: P - 1; H - 9; D -12; C - 39;
School year 8: P - 2; H - 13; D - 35; C - 97;
School year 9: P - 5; H - 32; D - 62; C - 106;
School year 10: P - 14; H - 42; D - 70; C - 124.
Резултати на 4-мата български състезатели, явили се на AIMO 2014 в ДАНИС, София:Petrov Ivo: Year 7; Total 23; High Distinction Award (H)
Bangachev Kiril: Year 9; Total 20; Distinction Award (D)
Blagoev Nikolay: Year 8; Total 20; Distinction Award (D)
Dimitrov Alek: Year 7; Total 20; Distinction Award (D)
Резултатите от Пловдив - още по-впечатляващи!!!Пореден уникален резултат на
Евгени Кайряков - 29 точки за седмокласника го изстрелват сред най-добрите математици, явили се на AIMO.
Деветокласникът Христо Папазов също е с 29 точки.
Страхотен резултат и за варненската звезда, осмокласничката Златина Милева, която е с 26 точки.
Цялостно страхотно представяне - 5 грамоти High Distinction за явилите се в Пловдив състезатели.
Освен тримата математици, изброени по-горе, с High Distinction са осмокласничката от ПЧМГ Владимира Иринчева с 23 точки - браво Влади, поредно страхотно постижение и десетокласникът Георги Русинов, който е с 26 точки.